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Section 1. Introduction

Understanding the processes that structure communities 
is a central theme of community ecology. Recently, network 
analytic techniques have been developed that may be used 
to analyze the connections (i.e., edges) between organisms 
(i.e., nodes) (Sole and Montoya 2001; Montoya et al. 2006; 
Ings et al. 2009; Barberan et al. 2012). Such links can include 
predator-prey interactions, mutualistic interactions such as 
flower-pollinator relationships, facilitative interactions such as 

co-metabolism, and spatial/temporal co-occurrence. Networks 
developed by linking species that co-occur in space or time 
(co-occurrence networks) are useful tools for understanding 
the complexity and sensitivity of these interactions and can be 
used to infer the processes that structure communities (Shade 
et al. 2010; Steele et al. 2011). Network topology describes the 
structure of a network (i.e., the pattern of nodes and edges) 
and can be quantified with statistics (Blonder et al. 2012). 
Most ecological networks have many links and are densely 
clustered (Montoya and Sole 2002). Moreover, most species 
are linked by only a few intermediate species, a phenomenon 
known as small-world behavior, which has been described for 
other networks such as the Internet or the power grid (Albert 
and Barabasi 2002; Albert et al. 2000). However, the underly-
ing causes of these patterns remain obscure (Montoya et al. 
2006).

Identifying interactions in natural communities in many 
cases requires observation and/or experimental manipulation, 
which is often limited to a few species pairs (Olesen et al. 
2011). One way to overcome this limitation and gain a greater 
understanding of the entire community of connections is the 
analyses of co-occurrence patterns in space and time, which 
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can help to identify potential links between many species 
(Ruan et al. 2006; Fuhrman and Steele 2008). Co-occurrence 
patterns might be shaped by species interactions, by com-
mon preferred environmental conditions, or by dispersal 
pressure. Spatial co-occurrence explicitly considers spatial 
overlap in species distributions across sites. For example, if a 
researcher has observations of ecological communities at mul-
tiple sites, a spatial co-occurrence network can be constructed 
whereby each site is represented by a node in the network, 
and nodes with the same species are linked to one another. 
Understanding spatial co-occurrence patterns is one of the 
goals of metacommunity analysis and spatial co-occurrence 
networks can be a useful tool for advancing our understanding 
of metacommunity dynamics (Leibold and Mikkelson 2002). 
Alternatively, co-occurrence networks can be used to consider 
temporal co-occurrence within a single habitat and com-
munity. Here, the links between nodes represent significant 
correlations in species abundance through time. This is akin 
to examining temporal synchrony between taxa living in the 
same environment (Rusak et al. 2008).

Here, we provide a conceptual framework for how co-oc-
currence patterns might be used to investigate drivers of 
community composition, such as dispersal and environmental 
variability, and use this to propose a set of working hypothe-
ses. First, the number of temporally or spatially co-occurring 
species and the number of links between these species might 
provide information about the strength of underlying mech-
anisms (Fig. 1). Assuming that a low dispersal rate within 
a metacommunity promotes species sorting (Leibold et al. 
2004), species interactions might be able to translate into more 
connected temporal co-occurrence networks on the local scale 
within individual habitats. On the other hand, massive disper-
sal, such as under a mass effect scenario (Leibold et al. 2004), 
likely dominates over species interactions, and therefore tem-
poral co-occurrence at the local scale might be more variable 
through time, resulting in fewer temporal connections.

Dispersal and colonization affect regional species pools, and 
hence, high dispersal rates might lead to large, well-connected 
spatial co-occurrence networks (Fig. 1). Environmental vari-
ability might form another gradient shaping co-occurrence 
patterns. Whereas asynchronous fluctuating environmental 
conditions may disrupt spatial synchrony and therefore co-oc-
currence, stable conditions or synchronous environmental 
fluctuations may allow enough time for the establishment of 
species interactions. Hence, along a gradient of synchrony in 
environmental variability, less synchronous conditions may 
support rather small networks of spatially connected species, 
whereas stable conditions may allow for larger and denser 
co-occurrence networks. Higher levels of dispersal should also 
maintain the stability of spatial networks through time, even in 
the face of environmental change, since organisms will rapidly 
be able to respond by colonizing new areas quickly (Fig. 1).

Based on the concept outlined above, we hypothesize 
that as spatial connectivity between locations increases, the 

size and connectedness of spatial co-occurrence networks 
increases whereas the size and connectedness of temporal 
co-occurrence networks for individual communities within 
those metacommunities decreases (Fig. 1). We test the pre-
dictions of the outlined framework using four decadal-scale 
datasets of aquatic communities in space and time as separate 
case studies: (1) phytoplankton species in lakes across Sweden, 
(2) invertebrates living in streams across a region of the east-
ern United States, (3) mixed communities of algae, inverte-
brates, and fish living in kelp forests off the coast of southern 
California, USA, and (4) ichthyoplankton found in the coastal 
ocean of the Southern California Bight.

Section 2. Materials and methods

Data sources
Data were collected from the Swedish University of 

Agricultural Sciences, the Santa Barbara Coastal Long Term 
Ecological Research Project (SBC LTER), the National Park 
Service, and the California Cooperative Ocean Fisheries 
Investigation (CalCOFI) (Table 1). Each dataset contained 
species count data for multiple locations that had been sam-
pled annually. Sampling was not consistent for all sites in the 
data sets, so before our analyses, we removed sites that had not 
been sampled in at least 75% of the years. All data used in the 
analysis were absolute abundances of individuals, not propor-
tions, so our analysis avoids the issues that come with using 

Fig. 1. Conceptual framework of how temporal and spatial networks may 
inform about meta-community properties. Low dispersal rates and stable 
environmental conditions may allow for species sorting and large correla-
tional networks over time. Such networks feature great numbers of species 
and/or many connections among species. Higher dispersal rates may lead 
to mass effects and sustain synchronicity in metapopulation abundance 
and therefore spatial correlations. Increasing environmental variability 
might interrupt the formation of species interactions or synchronicity and 
hence lead to smaller, less connected co-occurrence networks.
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compositional data (Friedman and Alm 2012). Moreover, cor-
relational co-occurrence networks have been demonstrated to 
be sensitive to sampling size, however to plateau at about 25 
samples (Berry and Widder 2014).

CalCOFI Icthyoplankton time series
The decline of the Pacific sardine fishery in the 1940s led to 

the creation of the CalCOFI ichthyoplankton time series (for 
a review, see Ohman and Venrick 2003). The ichthyoplankton 
surveys are used for the detection and appraisal of fishery 
resources and the study of population dynamics (including age 
specific data) and systematics of fishes (Smith and Richardson 
1977). Larval abundance has been shown to be a reliable index 
to estimate biomass of later life stages of pelagic fish, includ-
ing the economically important sardine, anchovy, and Pacific 
mackerel (Smith and Richardson 1977). In this analysis, we 
include both eggs and larvae from all species found in surface 
tows from the spring (Feb-May) cruises of 1984-2011 from 
the 75 station pattern (i.e., lines 76.7 to 93.3; the Southern 
California Bight; oceaninformatics.ucsd.edu). Eggs and larvae 
can have different ecological interactions so we treat them as 
separate nodes in our analysis. Ichthyoplankton data originate 
from the NOAA National Marine Fisheries Service, Southwest 
Fisheries Science Center, collected by NOAA CalCOFI survey 
teams and were identified by the SWFSC Ichthyoplankton 
Laboratory (Kramer et al. 1972; Smith and Richardson 1977).

Kelp forest time series
The giant kelp, Macrocystis pyrifera, in southern California 

grows on rocky reefs in shallow waters (5-30 m depth). The 
patchy distribution of rocky substrate along the coast of 
California causes kelp forests to occur in discrete stands that 
range from tens of meters to kilometers in alongshore length. 
Neighboring stands are typically separated by distances on 
the order of hundreds of meters (Cavanaugh et al. 2014). 
Kelp forests provide both food and habitat for a diverse array 
of algae, invertebrates, and fish (Dayton 1985; Graham et al. 
2007). Many of these species are relatively sedentary as adults, 
with home ranges on the order of 0.1–10 km (Kinlan and 
Gaines 2003). However, the larval stages of these species are 
dispersed by ocean currents, and they can travel distances that 
are orders of magnitude greater than their home ranges (100s 
km; Kinlan and Gaines 2003). Previous network analysis of 
kelp forest communities has found that these systems exhibit 
small-world network properties, whereby well-connected hub 
populations increase the connectivity and robustness of the 
kelp forest metapopulation (Watson et al. 2011).

Kelp forest community surveys were conducted at 11 sites 
in the Santa Barbara Channel each summer between late July 
and early August from 2001 to 2012 through the SBC LTER 
project (http://sbc.lternet.edu). At each site, divers measured 
the abundance of giant kelp, understory macroalgae, inverte-
brates, and reef fish along a permanent 40 m transect. Giant 
kelp fronds were counted in the 2 m × 40 m area around each T
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transect. The abundance of invertebrates and understory 
macroalgae was assessed in six 1 m2 quadrats, four 2 m × 20 m 
band transects, or 80 uniformly spaced points along the tran-
sect, depending on the species. Fish abundance was measured 
in a 2-m wide swath that was centered along the transect.

Lake time series
We analyzed summer phytoplankton data (July or August) 

from 67 small, oligotrophic, mostly humic lakes in Sweden 
from 1992 through 2008 and covering a latitudinal gradi-
ent between 56°N to 68°N; this dataset was made available 
through the Swedish National Lake Inventory (http://www.
slu.se/vatten-miljo, Willén 2007). Samples for the inventory 
were taken from the middle of the lakes, preserved with an 
acidic Lugol’s solution, and determined using the Utermöhl 
technique (EN15204, 2006) by a single certified laboratory.

Stream invertebrate time series
Data were extracted from the United States Geological 

Survey (USGS) Chester County 1970–1997 data set in the 
Aquatic Community Classification database maintained by 
The Nature Conservancy (TNC). This data set includes aquatic 
invertebrate data from greater than 1000 samples at more than 
50 sites in eastern Pennsylvania. The county encompasses 
1973 km2 of land and has an elevation gradient ranging from 
21 to 326 m asl (CCPC 2009). Invertebrate samples were col-
lected with a modified Hess sampler from 10 separate 30.5 
× 30.5-cm plots within the same riffle. The 10 samples were 
pooled before sorting and identification. Invertebrate samples 
were sorted in the laboratory, and all individuals were identi-
fied to genus except for Chironomidae and Planaridae, which 
were identified to family.

Network construction
There are numerous ways to explore temporal and spatial 

co-occurrence patterns (e.g., checkerboard scores, mutual 
information, local similarity analysis), and to our knowledge, 
a thorough review of the limitations of the individual metrics 
is still lacking. We chose ranked correlations based on absolute 
abundance data to compare between rather different types of 
ecosystems to avoid spurious correlations, which may inflate 
networks and reduce specificity (Friedman and Alm 2012). 
A recent analysis of modeled metacommunities has shown 
that co-occurrence networks based on Spearman and Pearson 
correlation coefficients outperform other metrics such as 
similarity based metrics (Bray-Curtis, Sörensen) in terms of 
sensitivity and specificity (Berry and Widder 2014).

We calculated all possible Spearman rank correlations 
between taxa for the temporal and spatial datasets using the 
packages ‘Hmisc’ and ‘qvalue’ in R v. 2.13.0 (R Development 
Core Team 2014). Significance was adjusted for multiple test-
ing using the BH procedure. An edge, or link between two 
species, in the network was considered if the absolute cor-
relation coefficient was larger 0.3 and significant at the 95% 

significance level (Junker and Schreiber 2008). Similar cutoffs 
were previously used to construct co-occurrence networks of 
soil microbial assemblages (Barberan et al. 2012), and recent 
work on microbial metapopulations based on generalized 
Lotka-Volterra models confirms the high accuracy and sensi-
tivity of co-occurrence networks constructed from rank-cor-
relation matrices (Berry and Widder 2014). Networks were 
built using unweight edges (i.e., interactions were considered 
irrespective of the sign and strength of the correlation), visual-
ized, and analyzed using the R packages ‘network’ and ‘igraph’ 
as well as the freeware software Cytoscape (Saito and Smoot 
2012) and gephi (Bastian et al. 2009). For each data set, spatial 
co-occurrence networks were created for each year for which 
there was data (n = 12–28 years in each dataset) and temporal 
networks for each spatial location (n = 11–67 sites in each 
system; Fig. 2).

We calculated the following topology metrics for each 
network: clustering coefficient, average node connectivity, 
diameter of the network, and average path length between 
nodes (species) of each network. The clustering coefficient 
measures the degree to which nodes of the network tend to 
cluster together and is a measure of the connectedness of the 
network and is indicative of the degree of species linkage in 
the network (Newman 2003). Node connectivity is a measure 
of the number of nodes that need to be removed to disconnect 
the remaining nodes from each other and is a measure of 
network robustness (Diestel 2005). In an ecological context, 
this node connectivity can also be inferred to be a measure 
of stability of interactions. Average path length is the aver-
age number of steps along the shortest paths for all possible 
pairs of network nodes, and diameter is the greatest distance 
between any pair of nodes. In our analysis, both diameter and 
average path length are considered measures of the size of the 
network. Larger networks are less connected, meaning that the 
likelihood of a strong connection between any two randomly 
selected species is low.

Statistical analyses
The network attributes (average path length, diameter, 

and cluster coefficient) for the temporal and spatial co-oc-
currence networks were compared across systems using one-
way ANOVA. All of those attributes met the assumptions of 
normality and equal variance. Average node connectivity was 
compared among groups using a nonparametric Kruskall-
Wallis rank sum test. The coefficient of variation for spatial 
co-occurrence networks was calculated for each system and 
compared across systems to determine if temporal stability in 
network strength matched our conceptual model.

Random and scale free networks
We compared network properties of the observed networks 

to scale free and random reference networks of the same size. 
Scale-free and random network versions of each network 
were calculated using Graph Crunch 2 (Kuchaiev et al. 2011). 
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Scale-free networks form by preferential attachment of new 
nodes to existing and well-connecting nodes. Networks such 
as the internet, power grids, and some biological networks are 
scale free (Albert and Barabasi 2002; Albert et al. 2000). On 
the other hand, disturbance may disrupt the network and lead 
to random co-occurrence patterns. To obtain a normalized 
measure of network stability, we calculated the distance, D, 
between the observed network properties and the scale-free 
and random models as

 
( )

( )
=

−

−
D

sf o

o r
 (1)

where sf is the scale free vector, r is the random value, and o 
is the observed value. On this scale, a value of 1 for D means 
the network is perfectly balanced between random and scale 
free; values that are > 1 are more scale free; and values < 1 are 
more random.

Section 3. Results

Temporal co-occurrence networks
For the temporal co-occurrence networks, several of the 

systems differed significantly from one another in terms 
of average path length between nodes (species), network 

diameter, and clustering coefficient (Table 2, Fig. 3). Average 
node connectivity did not differ among systems (χ2 = 4.22, df 
= 3, P = 0.24). Streams had the highest average path length 
followed by kelp forests and the open ocean (which did not 
differ from one another; P = 0.94), and then lakes. An identical 
pattern was observed for network diameter. Lakes and oceans 
had the two lowest clustering coefficients and did not differ 
significantly from one another (P = 0.53). Kelp and stream 
ecosystems had higher clustering coefficients and did not dif-
fer significantly from one another (P = 0.36).

Spatial co-occurrence networks
For the spatial co-occurrence networks, the systems again 

differed significantly from one another in terms of average 
path length, network diameter, and clustering coefficient 
(Table 3, Fig. 4). Oceans and kelp forest had significantly 
lower average path lengths and smaller network diameters 
than lakes and streams. Oceans had significantly higher clus-
tering coefficients than streams, but these two systems did not 
differ from lakes and kelp forest communities.

Temporal variation in spatial network properties differed 
between the four ecosystem types (Fig. 5, Table 4). Lakes phy-
toplankton communities consistently had the lowest variation 
in network density (i.e., average path length and clustering 

Fig. 2. Conceptual example of the network analysis. Shows the two contrasting methods that we used in the analysis. First a stream network (1), is 
divided into 4 spatial nodes (2), each with 3 years of data. From those data we either build a spatial co-occurrence network for each year (3a) and contrast 
those networks through time, or we build a temporal co-occurrence network for each spatial location (3b) and contrast them to each other. Building off 
this basic analysis (3a and 3b), we will be able to compare these results across systems to address general questions regarding the effect of aquatic com-
munity type on network topology.
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coefficient) through time. Streams had the second lowest vari-
ation for average path length and network diameter, but the 
second highest variation for clustering coefficient. Open ocean 
communities had the second lowest variation for clustering 
coefficient, and the third lowest for average path length and 
for network diameter. Kelp forest communities displayed the 
most variable spatial networks through time in every category.

Random and scale free networks:
The ratios of clustering coefficient and path length showed 

different patterns within each system type (Fig. 6). Average 
path length in streams tended to be in between scale-free 
and random networks in most years but matched random 
networks in 1976 and 1982. Clustering coefficient for stream 
networks was more variable throughout the time series. 
Average path length in lakes was very stable and was in the 

middle between scale free and random for the entire time 
series. Clustering coefficient in lakes was more variable than 
average path length, however, save for dips toward random 
in 1992 and 1994, clustering coefficient in lakes was closer to 
scale free than random. Kelp forests were much closer to ran-
dom than the preceding networks. Average path length ratio 
was less than 1 in all but 3 years, and clustering coefficient was 
less than one in all but 2 years. Open ocean networks exhib-
ited oscillations between random and scale free that were not 
present in the other systems. Average path length ratio tended 
to be greater than 1, but moved between 1.5 and 4.5, indicat-
ing scale free tendencies. Conversely, the clustering coefficient 
ratio tended to move between zero and one indicative of ran-
dom networks. For cluster coefficient in the open ocean, there 
was a period from 1999 to 2005 where the oscillatory dynamics 
ceased (Fig. 6 D1: solid line).

Table 2. ANOVA table comparing the stability of temporal co-occurrence network parameters in different aquatic ecosystems.

Source Df Sum sq Mean sq F P

Average path length 3 105.35 35.12 86.67 <0.0001

Residuals 156 63.21 0.41

Diameter 3 1351.00 450.30 114.20 <0.0001

Residuals 173 682.10 3.9

Clustering Coefficient 3 3.29 1.096 42.54 <0.0001

Residuals 115 2.96 0.026

Fig. 3. Comparison of the network characteristics of temporal co-occurrence networks for communities found in four different aquatic ecosystems. 
Ecosystem type is displayed on the x-axis, response variable is displayed on the y-axis. Ecosystems were found to differ significantly in terms of average 
path length between any two nodes in the network, diameter of the network, and clustering coefficient for the network (Table 2). Significant differences 
(α = 0.05) between ecosystems for significant ANOVA models were determined by Tukey’s HSD test and displayed as letters over the bars; different letters 
denote statistically different groups.
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Section 4. Discussion

Our conceptual model predicted that in ecosystems that are 
highly connected via dispersal we would observe highly con-
nected spatial co-occurrence networks and weakly connected 
temporal co-occurrence networks. The results of our analyses 
of streams and oceans matched this conceptual model: the 
relatively open ocean system was characterized by highly con-
nected spatial co-occurrence networks and weakly connected 
temporal co-occurrence networks, whereas the dispersal-lim-
ited stream system showed the opposite pattern. However, the 
kelp forest and lake networks deviated somewhat from our 
expectations. Kelp forest communities had well-connected 
spatial co-occurrence networks, as would be expected from 
an open system, but also had surprisingly highly connected 
temporal co-occurrence networks. These deviations from our 
conceptual model suggest that processes other than spatial 
connectivity are influencing the topology of the co-occurrence 

networks. We suspect that variation in disturbance regimes 
and the life history of the resident organisms may be respon-
sible for some of the deviations from our predictions. For 
example, frequent asynchronous disturbance could act to 
reduce the connectivity of spatial occurrence networks by 
causing increased variability in community structure across 
sites. On the other hand, frequent synchronous disturbance 
could increase both the connectivity of temporal occurrence 
networks and the variability in spatial co-occurrence networks 
through time. Below we discuss the detailed temporal and spa-
tial co-occurrence patterns of each aquatic ecosystem in turn 
and place those results in the context of our conceptual model.

Streams
Stream metacommunities are characterized by a hierarchi-

cal dendritic network of habitats moving from stable larger 
streams to successively smaller and less environmentally stable 

Table 3. ANOVA table comparing the stability of spatial co-occurrence network parameters in different aquatic ecosystems.

Source Df Sum sq Mean Sq F P

Average path length 3 61.32 20.44 18.60 <0.0001

Residuals 81 89.02 1.10

Diameter 3 506.10 168.70 17.03 <0.0001

Residuals 81 802.30 9.91

Clustering Coefficient 3 0.27 0.091 4.763 0.0042

Residuals 79 1.52 0.019

Fig. 4. Comparing the stability of spatial co-occurrence networks for communities found in four different aquatic ecosystems. Ecosystem type is dis-
played on the x-axis; response variable is displayed on the y-axis. Ecosystems were found to differ significantly in terms of average path length between 
any two nodes in the network, diameter of the network, and clustering coefficient for the network (Table 3). Node connectivity for streams was effectively 
zero. Significant differences (α = 0.05) between ecosystems for significant ANOVA models were determined by Tukey’s HSD test and displayed at letters 
over the bars; different letters denote statistically different groups.
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Fig. 5. Changes in spatial co-occurrence networks through time for ichthyoplankton (gray diamonds), lakes (dotted squares), kelp forest (black triangles), 
and streams (dashed black).

Table 4. Coefficient of variation for different network stability metrics through time for each system.

Measure Ocean Lakes Kelp Streams

Average node connectivity 2.49 2.82 2.91 0

Average path length 0.33 0.22 0.43 0.33

Diameter 0.44 0.29 0.64 0.37

Clustering coefficient 0.48 0.26 0.64 0.59
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second- and first-order streams. The smaller the stream, the 
more likely it will be affected by disturbance events like hydro-
logic flashiness and period droughts (Poff and Ward 1989). 
Both of these events are capable of severely affecting the com-
position of a local community. There is evidence for dispersal 
constraints affecting the composition of macroinvertebrate 
communities in streams, particularly further up in the stream 
network (Patrick and Swan 2011; Swan and Brown 2010). 
There is also evidence that the stream communities used in 
this analysis experienced environmental filtering (Patrick and 
Swan 2011).

The data set used for these analyses was composed of small 
streams. Seventy-five percent of the streams were third order 
or smaller, and of the remaining 25%, one was a fifth order 
and the rest were fourth order. Given the size of the streams, 
it is likely that frequent disturbance and re-colonization 
was an important part of the ecology of these communities. 
Variability in these disturbance and recolonization patterns 
may have led to the observed low temporal synchrony in these 
communities. These particular communities are undergoing a 
great deal of turnover between 1970 and 1997 offering support 
for this interpretation of the results (Patrick and Swan 2011).

The relatively large size and connectedness of temporal 
co-occurrence networks in streams matched our conceptual 
model (Fig. 1) and could be the result of dispersal limitation 
allowing communities in the metacommunity to reach their 
equilibrium behavior. However, frequent disturbance altering 

the composition of the communities may have prevented 
the communities from slowly developing stronger spatial 
co-occurrence associations, maintaining the relative strength 
of the networks as they are. This explanation fits with the 
observation that while the streams have poorly connected 
spatial co-occurrence networks, network strength is remark-
ably consistent through time, surpassed only by the relatively 
disturbance-free lake phytoplankton communities.

Ocean
The Southern California Bight, the area in which the ich-

thyoplankton were sampled, can be considered a fairly open 
ecosystem in terms of dispersal and connectivity compared 
with the other ecosystems in this study. We found that the net-
work connectedness of this community was low for temporal 
networks and high for spatial networks relative to the other 
ecosystems, again matching our conceptual model (Fig. 1). 
Our results also indicated low to medium size metrics (com-
pared with the other ecosystems) for both the temporal and 
spatial dimensions. Perhaps the low temporal connectedness 
is related to known and temporally variable oceanographic 
conditions.

Ichthyoplankton abundance has been linked to oceano-
graphic conditions such as temperature fluctuations asso-
ciated with climate variability including El Niño-Southern 
Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), 
events that vary on interdecadal to decadal time scales (Smith 

Fig. 6. Observed networks compared to random (ER) and scale free (SF) networks. A = Streams, B = Lakes, C = Kelp Forest, and D = Open Ocean. 1 = 
average path length, 2 = clustering coefficient, and 3 = ratio of random/scale free.
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and Eppley 1982; Moser et al. 2000; Hsieh et al. 2005). 
Additionally, variability in realized larval connectivity and 
larval abundance through time has been observed on seasonal 
to interannual time scales (Walker et al. 1987; Watson et al. 
2010). The environmental variability in this system might 
also explain the smaller network size (relative to the other 
systems) metrics seen in both time and space. Additionally, 
spatial patterns of ichthyoplankton counts may be related to 
physical features such as current, mesoscale eddies and fronts, 
that themselves are variable in space and time. A recent study 
showed similar simulated potential and realized larval con-
nectivity for two fish species in the Southern California Bight, 
indicating the importance of circulation processes affecting 
spatial distribution (Watson et al. 2010). It should be noted 
that ocean plankton patchiness in time and space can make 
sampling of this environment difficult (Haury et al. 1978). 
For stability of spatial networks through time, the coastal 
ocean was ranked in the middle compared with the other 
ecosystems. Through time, average path length was shown to 
be scale free, indicating strong robustness and the presence of 
key ‘hub’ species; on the other hand, connectivity and distance 
ratio tended toward random, perhaps a result of the stochastic 
nature of the oceanic environment.

Kelp
The kelp and ocean system are very similar in terms of 

network characteristics (see Figs. 3, 4, 5). Both systems also 
track each other in the timing of the stability of the spatial 
co-occurrence networks (Fig. 5). The kelp forests sampled in 
the dataset are nested within the Southern California Bight so 
both systems experience similar oceanographic and climate 
influences. The high connectedness of kelp spatial co-occur-
rence networks matched our expectations, as kelp forests are a 
relatively open system and most kelp-associated species have 
relatively high larval dispersal capabilities. Large amounts 
of dispersal would increase the connectivity of kelp forests, 
giving many species the opportunity to occur in most or all 
of the sites when conditions are suitable for colonization. The 
kelp forests sites were all located in a relatively small region 
(within ~ 70 km), and so there was not much spatial variability 
in environmental conditions such as sea surface temperature, 
nutrient levels, and wave disturbance. The high connectedness 
of the temporal co-occurrence networks may have been due to 
the fact that many species responded similarly to synchronous 
environmental variability, disturbance, or variability in larval 
transport due to changes in circulation patterns. Previous 
work has shown that giant kelp forest food-web structure and 
diversity is dependent on the abundance of giant kelp itself 
(Foster and Schiel 1985; Graham 2004; Byrnes et al. 2011). 
It follows that changes in the abundance of giant kelp could 
impact many kelp-associated species in a similar manner. 
Whereas network stability of spatial and temporal co-oc-
currence networks was high, the long-term stability of kelp 
forest spatial co-occurrence networks was low. This matches 

with previous observations of high variability in the food-
web structure of kelp forest communities (Byrnes et al. 2011). 
Giant kelp abundance is highly variable in time (Cavanaugh et 
al. 2011), and this variability could be influencing the popula-
tion dynamics of kelp-associated species.

Lakes
Compared with ocean and stream ecosystems, lakes rep-

resent a patchy environment embedded in an otherwise 
mostly hostile environment for phytoplankton communities. 
Nevertheless, lake phytoplankton communities form large 
spatial co-occurrence networks. Phytoplankton species may 
disperse via water flow, on animals, and via the atmosphere, 
and individual dispersal capabilities depend on the ability to 
withstand transport conditions. Many phytoplankton spe-
cies are known to form spores, which better endure dry and 
high-radiation conditions (Kristiansen 1996). One might 
assume that dispersal among lakes might be limited and 
related to spatial distance, however, regionally abundant taxa 
have been shown to also be widespread (Östman et al. 2010). 
In the same study, the authors report that phytoplankton 
dispersal might be less important in structuring local com-
munities when environmental variation was high. The dataset 
analyzed here covered a latitudinal gradient between 56°N and 
68°N, and latitudinal diversity gradients, which are known for 
other microbes (e.g., Fuhrman and Steele 2008; Lozupone and 
Knight 2007), might explain some of the spatial co-occurrence 
patterns (i.e., some species gradually disappearing toward the 
North). However, phytoplankton community composition 
and function along this gradient have been shown to exhibit 
significant shifts depending on growing season length rather 
than gradual changes (Wehyenmeyer et al. 2012). Such a 
natural borderline, which is known for plants as the limes 
norrlandicus, might affect dispersal in a distance-independent 
way. Also, environmental variability within these lake eco-
systems might covary with latitude, with higher latitude lakes 
being exposed to long winters and short growing seasons. The 
temporal co-occurrence networks of lake phytoplankton were 
comparably small and poorly connected but featured a high 
long-term stability. This might indicate that temporal turn-
over of lake phytoplankton, and the influence of disturbances 
in patchy environments are relatively low. In conclusion, 
factors such as patchiness, dispersal limitation, environmen-
tal gradients, and regime shifts complicate the prediction 
of the influence of dispersal and fluctuating environmental 
conditions for pelagic freshwater ecosystems. However, co-oc-
currence networks might be a useful tool to further explore 
metacommunity dynamics in such systems.

Factors to consider when performing comparative network 
analyses

Our results highlight the difficulty in reliably distinguish-
ing the specific mechanisms underlying the patterns that 
network analysis identifies. The differences in the topology of 
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the networks can be attributed to a large number of potential 
factors, which include species sorting, disturbance, sampling 
efforts, generation times of the organisms, and the role of 
dominant species. In addition, it can be difficult to character-
ize the connectivity of systems based on the spatial arrange-
ment of habitat and species’ dispersal capabilities because 
comparable quantitative estimates for dispersal mode and 
ability do not exist for most of the described taxa on earth.

Our conceptual model does not account for the strength of 
species sorting (local niche-based processes), a major factor 
that has become a recognized part of the metacommunity 
concept (Logue et al. 2011). As species sorting decreases in 
strength, we might predict a decreased impact of dispersal and 
connectivity on the stability of the constructed co-occurrence 
networks. Frequency of disturbance and evolutionary adap-
tion to disturbance is another factor that is unaccounted for in 
the conceptual model. Streams and kelp forests, in particular, 
are much more disturbance prone than the ocean and lake sys-
tems (Byrnes et al. 2011, Resh et al. 1988); however, patchiness 
might counteract this vulnerability if only a subset of systems 
is affected by a perturbation.

Sampling effort may have also impacted the results that we 
present here. We assume that the data sets have sampled the 
majority species in each ecosystem and the consistent sam-
pling of these ecosystems through the decades makes this a 
reasonable assumption. However, the total number of nodes 
sets the theoretical maximum diameter of a given network. 
Thus, increased sampling efforts (e.g., in extent, effort and/or 
frequency; additional trophic levels e.g., microbes; time of day 
or seasonality) might cause the network topology to change 
(Butts 2009).

Furthermore, the temporal frequency of sampling, while 
the same for the data analyzed here, was not always in syn-
chrony with the generation times of all the organisms. Annual 
sampling is very appropriate for the invertebrates in the 
stream data sets, which were univoltine, but may have been 
less appropriate for organisms like phytoplankton and zoo-
plankton, which have short generation times. It is difficult to 
determine what portion of the variation among case studies is 
attributable to differences in generation time. Further study 
is necessary to determine how differences in sampling regime 
(Blonder et al. 2012) and generation time affect the topology 
of spatial and temporal co-occurrence networks. This could 
be accomplished through analyses of replicate ecosystems sur-
veying the same type of organisms. This would enable a deeper 
look into mechanisms affecting co-occurrence patterns.

Another concern is the role of dominant species in affect-
ing network connections. Recently, Friedman and Alm (2012) 
reported that in communities with a high degree of dominance, 
such as in bacterial communities, changes in the relative abun-
dance of dominant species might lead to the detection of spu-
rious correlations, and hence, false co-occurrence networks. 
Compared with bacterial communities, the communities 
addressed in this study feature relatively little dominance, and 

we used ranked correlations of absolute abundance data to 
infer co-occurrence patterns. Hence, we expect that spurious 
correlations due to changes in relative abundance should not 
affect our analyses. Moreover, the analysis of modeled meta-
communities confirmed that co-occurrence networks con-
structed from correlation matrices outperform other matrices, 
and hence, are useful tools to investigate network properties 
(Berry and Widder 2014). Despite these challenges, there is 
much to be learned from these valuable long-term datasets.

Section 6. Final conclusions

Connectivity and dispersal are an important but poorly 
understood part of aquatic ecosystem dynamics (Shurin et al. 
2009; De Bie et al. 2012; Perkin and Gido 2012). We used eco-
logical networks to describe the associations between species 
found in a range of aquatic ecosystems. By simultaneously 
considering both spatial and temporal co-occurrence network 
characteristics, we were able to distill the major patterns in 
the spatial and temporal co-occurrence across aquatic systems 
and compare different habitats. Furthermore, we were able to 
demonstrate the types of inference that can be drawn from this 
analysis and believe that this could be used to study a variety 
of ecosystems where more information about species interac-
tions and dynamics of the system is desired. Network analysis 
could be especially important in the context of global climate 
change as another way to measure changes in the properties of 
biological systems as they experience changes in environmen-
tal conditions (Roemmich and McGowan 1995).

This analysis also highlights the importance of collecting 
long-term ecological time-series data. Long-term ecological 
datasets are an extremely valuable tool for providing baseline 
metrics with which to compare future changes, studying and 
predicting future trends in ecosystems, evaluating ecological 
processes that occur on decadal scales, and distinguishing 
anthropogenic activities from underlying natural change 
(Magurran et al. 2010). We would not have been able to 
complete the analyses in this chapter without such datasets. 
Complete understanding of the spatial and temporal dynam-
ics of ecological systems is rarely accomplished; however, it 
is clear from the growing body of literature on metacommu-
nities that these complex dynamics are key components of 
ecosystems (Leibold et al. 2004; Logue et al. 2011). Ultimately, 
better understanding of metacommunity dynamics will help 
resource managers increase the success of conservation and 
restoration projects that seek to manage entire systems (Bie et 
al. 2012; Moser et al. 2001).
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