Decadal diagenetic effects on d13C and d15N studied in varved lake sediment

Gälman, Veronika, Johan Rydberg, Christian Bigler

Limnol. Oceanogr., 54(3), 2009, 917-924 | DOI: 10.4319/lo.2009.54.3.0917

ABSTRACT: To assess the long-term (27 yr) effects of sediment aging on stable carbon and nitrogen isotope values (δ13C and δ15N), we used a collection of eight freeze cores of annually laminated (varved) lake sediment collected from 1979 to 2007 in Nylandssjon (northern Sweden). Previous research has shown that 20-23% of carbon and 35% of nitrogen is lost in 27 yr. Material from specific years was compared in the cores, e.g., δ13C and δ15N of the surface varve of the 1979 core was followed in cores retrieved in 1980, 1989, 1993, 2002, 2004, and 2006. δ13C increased by 0.4-1.5% during the first 5 yr. After this initial increase, only minor fluctuations were recorded. There is a good correlation between the magnitude in δ13C changes and the initial carbon and nitrogen concentrations, indicating that the initial sediment composition is important for the 13C fractionation. δ15N gradually decreased by 0.3-0.7% over the entire 27-yr period. The lack of correlation with the initial sediment composition and the gradual decrease in δ15N indicates a microbial control on δ15N change. The diagenetic changes in the stable isotope values that occur in Nylandssjon are small, but of the same magnitude as the down-core variation in the varves deposited 1950-2006. Diagenetic effects should be considered when δ13C and δ15N are used to study organic matter sources or paleoproductivity, especially when dealing with recent trends or small changes. Based on our findings, diagenetic effects for δ13C are observed during the first 5-10 yr, whereas no delimitation can be recommended for δ15N.

Article Links

Please Note