Postindustrial enhancement of aragonite undersaturation in the upper tropical and subtropical Atlantic Ocean: The role of fossil fuel CO₂

Sook-Nye Chung, Geun-Ha Park, and Kitack Lee
School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea

Robert M. Key
Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey 08544

Frank J. Millero
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149

Richard A. Feely and Christopher L. Sabine
Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington 98115-0070

Paul G. Falkowski
Institute of Marine and Coastal Sciences and Department of Geology, Rutgers University, New Brunswick, New Jersey 08901-8521

Abstract

The dissolution of aragonite particles in the ocean primarily depends on the degree of undersaturation of seawater with respect to that mineral. Most of the upper Atlantic Ocean, particularly north of 30°S and at depths of less than 2000 m, is supersaturated with respect to aragonite, whereas much of the deep Atlantic is undersaturated. Here we report, for the first time, shallow layers of aragonite-undersaturated water between 20°S and 15°N in the eastern tropical Atlantic. These layers are centered at 800 m and are surrounded by aragonite-supersaturated water above and below. This feature most likely results from a combination of chemical and biological processes including the uptake of anthropogenic CO₂ and the oxidation of organic matter falling from the highly productive overlying surface water. Reaction with protons resulting from these processes decreases the carbonate ion concentration and consequently the saturation state of the waters with respect to aragonite. The oceanic uptake of anthropogenic CO₂ during the industrial era has caused a significant increase in the size of the undersaturated layers. Future expansion will likely occur laterally to the west and south, where the degree of supersaturation is low compared to waters to the north. This expansion of the undersaturated layers is a prime example of how human activity during the industrial era has altered the upper ocean chemistry by injecting fossil fuel CO₂ into the ocean.

The saturation state of seawater with respect to aragonite (Ωₐ) under in situ conditions of temperature, salinity, and pressure is defined as

$$\Omega_a = \frac{[\text{Ca}^{2+}] [\text{CO}_3^{2-}]}{K^*_{\text{A}_{2\text{P}}}}$$

where $K^*_{\text{A}_{2\text{P}}}$ is the stoichiometric solubility product for aragonite. When Ω_a is greater than 1, seawater is supersaturated with respect to aragonite, and, conversely, when Ω_a is less than 1, seawater is undersaturated. The degree of saturation decreases with increasing depth in the ocean because the solubility of aragonite increases with increasing pressure (Ingle 1975). A number of factors contribute to the increase in aragonite solubility with increasing depth. First, increasing the pressure modifies the dissociation constants of carbonic and boric acids, leading to a decrease in the pH and consequently decreases in the concentration of carbonate ion $[\text{CO}_3^{2-}]$ and the Ω_a. Second, oxidation of organic matter falling from the overlying surface layer releases CO₂, which in turn decreases the pH and $[\text{CO}_3^{2-}]$ and, as a consequence, Ω_a decreases:

$$\text{CO}_2\cdot\text{H}_2\text{O} + \text{CO}_3^{2-} \rightarrow 2\text{HCO}_3^-$$

Acknowledgments

We wish to thank Rik Wanninkhof of Atlantic Oceanographic and Meteorological Laboratory for providing us with his insight into the oceanic carbonate system. This work was supported by grant R01-2002-000-00549-0 (2003) and R11-2003-006 from the Basic Research Program of the Korea Science and Engineering Foundation (K.L.), by the Brain Korea 21 Project in 2003 (K.L.), by the U.S. National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research (R.A.F, F.J.M., C.L.S.), by the U.S. National Science Foundation (R.M.K., F.J.M.), and National Aeronautics and Space Administration (P.F.). This paper was assigned to contribution Number 2583 from the Pacific Marine Environmental Laboratory.
The organic matter effect is generally more important in shallow waters, whereas the pressure effect dominates in deep waters. Third, the solubility of aragonite increases with decreasing temperature (Mucci 1983), although this temperature effect is small compared to the other factors. The above three factors collectively cause aragonite particles to become significantly more soluble at depth.

In the upper ocean, uptake of fossil fuel CO$_2$ will lower [CO$_2$] according to the Eq. 2, which will consequently lower Ω_A. This process has been extensively discussed (Fairhall 1973; Whitfield 1975; Broecker et al. 1979; Kleypas et al. 1999; Feely et al. 2002; Sabine et al. 2002; Chung et al. 2003). Analyses of a recently compiled global carbon dataset suggest a significant upward migration (40–200 m) of the aragonite saturation horizon in the world oceans during the industrial era (Feely et al. 2002; Sabine et al. 2002; Chung et al. 2003), largely due to the uptake of fossil fuel CO$_2$. This upward migration of the aragonite saturation horizon may cause CaCO$_3$ particles falling from the surface to be dissolved at shallower depths than in the preindustrial era, which will influence the supply of CaCO$_3$ to the sediments. In this paper we describe an interesting feature of aragonite undersaturation found in the tropical and subtropical Atlantic, sandwiched between supersaturated waters. We also present possible mechanisms responsible for formation of these isolated layers of undersaturated waters. The formation of this feature is a good example of how oceanic uptake of fossil fuel CO$_2$ can influence the oceanic CaCO$_3$ cycle by changing the carbonate chemistry of the upper ocean.

Data analysis and calculation method

The WOCE/JGOFS/OACES Atlantic carbon dataset—Measurements of total alkalinity ($A_T = [\text{HCO}_3^-] + 2[\text{CO}_3^{2-}] + [\text{B(OH)}_3^-] + [\text{HPO}_4^{2-}] + 2[\text{PO}_4^{3-}] + [\text{SiO}_2\text{OH}_2^-] + [\text{OH}^-] - [\text{H}^+]$) and total dissolved inorganic carbon ($C_T = [\text{CO}_2^{*}] + [\text{HCO}_3^-] + [\text{CO}_3^{2-}]$, [CO$_2$] = H$_2CO_3$ + CO$_3^{2-}$) used to calculate in situ Ω_A were collected as part of the World Ocean Circulation Experiment (WOCE) Hydrographic Program, the International Joint Global Ocean Flux Study (JGOFS), and the Ocean–Atmosphere Carbon Exchange Study (OACES) of the National Oceanic and Atmospheric Administration (NOAA) between 1990 and 1998. The combined Atlantic dataset includes calibrated data from 23 cruises (Wanninkhof et al. 2003) and comprises 28,639 measurements of C_T and 18,771 measurements of A_T. This same dataset has been used to estimate the inventory of anthropogenic CO$_2$ (Lee et al. in press) and the in situ dissolution rate of CaCO$_3$ (Chung et al. 2003) in the Atlantic Ocean and is available at http://cdiac.ornl.gov/oceans/datameta.html.

Saturation state of seawater with respect to aragonite (Ω_A)—The variation of Ω_A in the ocean (see Eq. 1) is largely determined by the in situ [CO$_3^{2-}$] and the pressure dependence of the K_{sp}^{Ar} because the calcium ion concentration [Ca$^{2+}$] is approximately conservative. The in situ [CO$_3^{2-}$] was calculated from A_T and C_T using the pressure-corrected thermodynamic constants that were found to be most consistent with calibrated field measurements (Lee et al. 2000). These constants include the carbonic acid dissociation constants of Mehrbach et al. (1973) as refitted by Dickson and Millero (1987) and other ancillary constants as recommended by Millero (1995). The pressure effect on these dissociation constants was estimated from partial molal volume and compressibility data (Millero 1995). The values of K_{sp}^{Ar} were taken from Mucci (1983) at a given temperature and salinity at 1 atmosphere, and the effect of pressure on K_{sp}^{Ar} was also estimated from partial molal volume and compressibility data (Millero 1995).

The probable error of the calculated Ω_A due to uncertainties in the equilibrium constants and measured values is ±0.054 for water at 800 m based on the following uncertainties: ±0.13 in K_{sp}^{Ar} the solubility product of aragonite; ±0.19 in pressure-corrected K_{sp}^{Ar}; ±4 μmol kg$^{-1}$ in measured A_T; ±2 μmol kg$^{-1}$ in measured C_T, and ±0.004 in pressure-corrected pK_i (i: carbonic and borac acids) (see Table 1). The uncertainties of the measured thermodynamic constants were taken from the original works (Ingle 1975; Mucci 1983), and those of the measured parameters were from Millero et al. (1993) and Johnson et al. (1993). The probable error due to uncertainties in thermodynamic constants and measured parameters is the square root of the sum of the squared errors.

Anthropogenic CO$_2$—We calculated the in situ Ω_A for the preindustrial era using measured A_T and estimates of preindustrial C_T for waters sampled during the Atlantic CO$_2$ survey. An important assumption in this calculation is that A_T has not changed due to oceanic uptake of anthropogenic CO$_2$. The preindustrial C_T for each sample was obtained by subtracting off the anthropogenic CO$_2$ concentration (Lee et al. in press), which was estimated using the modified version of ΔC^* approach developed by Gruber et al. (1996). The modified method includes a more accurate determination of the net air–sea disequilibrium for a sample using an optimum multiparameter (OMP) analysis. Details of the OMP procedure for estimating mixing coefficients are given elsewhere (Lee et al. in press).

Results and discussion

Aragonite saturation in the upper tropical and subtropical Atlantic—Figure 1a,e shows the meridional distribution of
Fig. 1. The meridional distributions of (a, e) in situ aragonite saturation state (Ω_A), (b, f) apparent oxygen utilization (AOU), (c, g) total inorganic carbon (C_T), (d, h) anthropogenic CO$_2$ in the western (left panels) and eastern (right panels) (sub)tropical Atlantic between 30$^\circ$N and 30$^\circ$S. Heavy dotted and solid lines represent the aragonite saturation horizons for preindustrial era and period of measurement, respectively.

In situ Ω_A in the eastern and western (sub)tropical Atlantic between 30$^\circ$N and 30$^\circ$S. Water shallower than 2500 m is supersaturated by as much as 300–400% with respect to aragonite, whereas water below this depth is undersaturated. The aragonite saturation depth ($\Omega_A = 1$) is generally greater in the western than in the eastern basin because the eastern waters have accumulated more CO$_2$ from the oxidation of organic matter falling from the surface. The depth and areal extent of isolated layers of undersaturated water in the upper eastern tropical and subtropical Atlantic can be observed in Fig. 1e and Fig. 2c. These undersaturated layers are located at depths of 600–1100 m along 20$^\circ$W from 14$^\circ$N to 16$^\circ$S (hereafter called box 1) and at depths of 500–1000 m along 10$^\circ$E from the equator to 20$^\circ$S off the coast of Africa (hereafter called box 2). These layers are bounded above and below by supersaturated waters (Fig. 1e).

Inventories of organic matter– and fossil fuel–derived carbon in undersaturated layers—The amounts of organic matter– and fossil fuel–derived carbon that have contributed to the present state of aragonite saturation in boxes 1 and 2 were calculated separately (Table 2). The total inventory of organic matter–derived carbon (ΔC_{org}) for each latitude band of the undersaturated layer was estimated by multiply-
Fig. 2. (a) Export production and (b) primary production derived from data collected by the SeaWiFS satellite. (c) Areal extents of aragonite-undersaturated layer at 800-m depths. Black rectangles in (a) and (b) indicate the areal domains of box 1 and box 2. Laws et al.’s estimates of export production from the surface layer above box 1 and box 2 are 8.1×10^{12} mol C yr$^{-1}$ and 17.6×10^{12} mol C yr$^{-1}$, respectively. Note that Lee’s estimation for the surface layer above box 1 is 7.3×10^{12} mol C yr$^{-1}$. The solid line in the tropics represents the areal extent of undersaturated layer for today, whereas the dotted line represents that for the preindustrial era.

Table 2. Carbon budget (expressed as 10^{12} mol C) for two layers of undersaturated water with respect to aragonite in the upper tropical and subtropical Atlantic.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Box 1</th>
<th>Box 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume ($\times 10^6$ km3)</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>(1,330\times3,570\times0.5)*</td>
<td>(1,920\times2,210\times0.5)*</td>
</tr>
<tr>
<td>Organic C oxidation estimated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>from NCF</td>
<td>15.8\pm4.6†</td>
<td>29.6\pm4.4†</td>
</tr>
<tr>
<td>from AOU (C/O$_2$ = 117/170)</td>
<td>13.8\pm1.3‡</td>
<td>34.1\pm1.5§</td>
</tr>
<tr>
<td>Anthropogenic CO$_2$</td>
<td>26.3\pm4.5§</td>
<td>34.2\pm3.1§</td>
</tr>
<tr>
<td>Total C added</td>
<td>40.1\pm5.8</td>
<td>68.3\pm4.6</td>
</tr>
</tbody>
</table>

* Width (km) \times length (km) \times height (km).
† Error estimated using an uncertainty of $\pm 2 \mu$mol kg$^{-1}$ in measured C$_T$ (Johnson et al. 1993).
‡ Error estimated using an uncertainty of $\pm 2 \mu$mol kg$^{-1}$ in measured O$_2$.
§ Potential errors of anthropogenic CO$_2$ inventories for two boxes are estimated based on errors associated with estimating mixing coefficients from the optimum multiparameter (OMP) analysis and with defining the end member water types using the uncertainty in the calculated anthropogenic CO$_2$ concentration. Errors in definitions of source water types yielded an error of about 17% of the anthropogenic CO$_2$ inventory for each box. Detailed error analysis was described in Lee et al. (in press).
|| The total carbon added is the sum of AOU-derived carbon and anthropogenic CO$_2$.

where the mean NCF values, NC$^F_{\text{mean}}$, were estimated for each 2° latitude band from the upper (U, meters in depth) to lower (L, meters in depth) boundaries of the undersaturated layer (Fig. 3b,c)

$$\Delta C^{\text{total}}(\text{lat. } 1, \text{ lat. } 2) = V(\text{lat. } 1, \text{ lat. } 2; \text{ long. } 1, \text{ long. } 2; L, U) \times \Delta NC^F_{\text{mean}}$$

(3)
Enhancement of aragonite undersaturation

where A (lat. 1, lat. 2; long. 1, long. 2) is the area of each latitude band. The estimated inventories for all latitude bands were summed to produce the total anthropogenic CO$_2$ inventory for each undersaturated layer. The total amounts of anthropogenic CO$_2$ have accumulated in boxes 1 and 2 are $(26.3 \pm 4.5) \times 10^{12}$ mol C and $(34.2 \pm 3.1) \times 10^{12}$ mol C, respectively, and are assumed to reflect 1994 conditions, the middle year of the Atlantic survey (Lee et al. in press). Thus, oceanic uptake of anthropogenic CO$_2$ and in situ oxidation of organic matter could have contributed an additional (40.1 ± 5.8) and $(68.3 \pm 4.6) \times 10^{12}$ mol C to boxes 1 and 2, respectively.

Proposed mechanisms for formation of aragonite-undersaturated layers—Comparison of the Ω_A distributions (Fig. 1a,e) with the corresponding AOU (Fig. 1b,f) and C_T distributions (Fig. 1c,g) reveals that regions of aragonite-undersaturated water coincide with regions of relatively high AOU and C_T. These correlations suggest that biological processes might, at least partially, account for the observed local reduction in the aragonite saturation state. Biological processes play a more important role in forming box 2 than box 1 (see Table 2). This is generally consistent with satellite-based estimation of higher export production from the surface layer above box 2 than box 1 (Fig. 2a) (Laws et al. 2000). A combination of higher export production from the surface layer and subsequent oxidation of organic matter results in a higher degree of undersaturation in box 2 than in box 1. The higher the export production is, the greater the amount of organic carbon available for biological oxidation will be. Export production was based on the pelagic food web model and net photosynthesis estimated from data collected by the SeaWiFS satellite (Fig. 2b) (Laws et al. 2000). The estimate of Laws et al. for box 1 is in reasonable agreement with that obtained by Lee (2001) for the same area by integrating the seasonal decrease in mixed layer NC_T. However, for box 2, comparison of Lee’s estimate (Lee 2001) with that of Laws et al. (2000) is inappropriate, because Lee’s method uses a coarse resolution (4° latitude $\times 5^\circ$ longitude) and misses or underestimates export production occurring near the coast of Africa. The uptake of anthropogenic CO$_2$ is also important in formation of undersaturated water but more or less evenly affects box 1 and box 2 (Fig. 1d,h).

The formation of isolated layers of aragonite-undersaturated water could potentially be driven by mechanisms other than increases in anthropogenic CO$_2$ and organic matter oxidation; however, none of the possible alternative mechanisms seems plausible. One example is mixing between different source water types flowing into this region. The southern end member is the Antarctic intermediate water (AAIW) and the northern end member is the North Atlantic central water (NACW). The AAIW appears as a low-salinity layer extending to as far as 20°N (Pickard and Emery 1982). The OMP analysis used to determine the mixing coefficients of the various source water types contributing to the waters in this region suggests that approximately 75% of the undersaturated water centered at 800-m depth in the tropical Atlantic is AAIW (Lee et al. in press). In fact, mixing between the AAIW from the south and the NACW from the north makes it impossible to produce undersaturated water.
Assuming that anthropogenic CO$_2$ continues to accumulate over the last 45 yr is 0.20 m between 20° and this rate in the future, we predict that the intermediate in situ dissolution of CaCO$_3$ in this upper tropical and of this century (Table 3).

*The mean increase in C$_T$ is the difference between the present-day C$_T$ and the future C$_T$ that is needed to make each region undersaturated with respect to aragonite. We calculated the future C$_T$ using the thermodynamic relationships and the assumption that the present-day A$_T$ will not change in the future due to oceanic uptake of anthropogenic CO$_2$.

†The accumulation rate of anthropogenic CO$_2$ for each region was estimated by dividing 80% of the total anthropogenic CO$_2$ inventory by 45 yr; this approach assumes that 80% of the total has accumulated over the last 45 yr.

because water feeding into box 1 from the southern (AAIW) and northern (NACW) ends is actually supersaturated by approximately 120% and 147%, respectively (Fig. 3a). Similarly, mixing of the AAIW and the NACW cannot produce undersaturated water in box 2.

Geochemical consequences of lowered saturation state— The volume of the aragonite-undersaturated layer for the pre-industrial era (dotted line) (Figs. 1e and 2c) is significantly smaller than in the mid-1990s (solid line) (Figs. 1e and 2c). During the industrial era, the undersaturated layer has predominantly expanded laterally, which has led to the union of the two separate layers of undersaturated water present during the preindustrial era. Expansion of the undersaturated layer has mainly occurred in the south tropical Atlantic, largely due to considerably lower levels of oversaturation in the south compared to the north. Implicit in this conclusion is the assumption that carbon export production from highly productive overlying surface water and the amount of organic matter oxidized within this layer have not changed since the onset of the Industrial Revolution. If production has in fact increased, for example through changes in dust deposition over time, then this would contribute to the expansion of the undersaturated layer. Expansion of this undersaturated layer would likely occur laterally to the west and subsequently to the south, where the degree of supersaturation is low relative to waters to the north (Fig. 2).

We now consider the implications of the present work for the future ocean carbonate system. The mean accumulation rate of anthropogenic CO$_2$ in the western tropical Atlantic over the last 45 yr is 0.20 μmol kg$^{-1}$ yr$^{-1}$ (see Table 3). Assuming that anthropogenic CO$_2$ continues to accumulate at this rate in the future, we predict that the intermediate water (centered about 800-m depth) of the entire tropical Atlantic between 20°N and 20°S will become undersaturated with respect to aragonite by about the middle of this century (Table 3). Subsequently, undersaturation is predicted to steadily expand to the south. Similarly, the mean accumulation rate of anthropogenic CO$_2$ in the intermediate water of the South Atlantic is 0.51 μmol kg$^{-1}$ yr$^{-1}$, and hence this region is predicted to become undersaturated by the later part of this century (Table 3).

Continuous expansion of the undersaturated zone will increase in situ dissolution of CaCO$_3$ in this upper tropical and subtropical Atlantic Ocean. This enhanced dissolution will eventually result in a greater supply of alkalinity to the surface and a smaller supply of CaCO$_3$ to the sediments. Enhanced shallow water dissolution of CaCO$_3$ is particularly important in the buffering of fossil fuel CO$_2$ injected into the upper ocean. Laboratory experiments (Riebesell et al. 2000) indicate that reduced supersaturation of the upper ocean slows the calcification rate of certain coccolith species. From a global prospective, a lowering of the calcification rate and an enhancement of the dissolution of CaCO$_3$ in the upper ocean would increase fossil fuel CO$_2$ storage in the upper ocean.

Analysis of inorganic carbon data compiled from the Atlantic CO$_2$ survey in the 1990s revealed an aragonite-undersaturation zone in the core of the Antarctic Intermediate Water that has not been noted previously and is not found in the other basins (Feely et al. 2002; Sabine et al. 2002). The aragonite-undersaturated water mass is surrounded both laterally and vertically by supersaturated waters. The accumulation of anthropogenic CO$_2$ and the in situ oxidation of organic matter are primarily responsible for the formation of these undersaturated layers. Future expansion of these undersaturated zones is likely to depend on the anthropogenic CO$_2$ accumulation rate.

Table 3. The amount of anthropogenic CO$_2$ and time required to make the western tropical Atlantic and the South Atlantic undersaturated with respect to aragonite in the future.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Western tropical Atlantic (20°N–20°S, 30°W–60°W, 500–1,100 m)</th>
<th>South Atlantic (20°S–40°S, 500–1,100 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean T$_{\text{f}}$</td>
<td>11.8 μmol kg$^{-1}$</td>
<td>49.6 μmol kg$^{-1}$</td>
</tr>
<tr>
<td>Mean accumulation rate of anthropogenic CO$_2$</td>
<td>0.20±0.1 μmol kg$^{-1}$ yr$^{-1}$</td>
<td>0.51±0.13 μmol kg$^{-1}$ yr$^{-1}$</td>
</tr>
<tr>
<td>Mean time required to make each region undersaturated</td>
<td>58 yr</td>
<td>98 yr</td>
</tr>
</tbody>
</table>

References

Enhancement of aragonite undersaturation

Received: 11 June 2003
Accepted: 9 October 2003
Amended: 3 November 2003