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Abstract

Autoregressive statistical models of monthly salinity variations in the mainstem of Chesapeake Bay are developed
for use in climate change applications. Observations of salinity and Susquehanna River flow from 1984 to 1994
are used to calibrate the models. Up to 93% of the variance in salinity is captured by these models, with the best
fits occurring in the middle of the bay, where submonthly fluctuations due to river flow and oceanic currents are
damped. Our salinity models use output from a climate-forced hydrological model under a doubling of present-day
atmospheric CO2. This coupling scheme predicts salinity changes between 13.5% and 227.5% near the mouth of
the Susquehanna River, to between 10.1% and 20.7% near the ocean. These ranges demonstrate the uncertainty
in climate model predictions, although three of the four scenarios used indicate increased Susquehanna River flow
and therefore decreased salinity. In the highest flow scenario (a 32% annual increase) our results show that the
bay’s isohalines may recede by approximately 6.3 km (about 2% of the length of the bay) near the Susquehanna
River, to as much as 55 km (about 17% of the length of the bay) near the middle bay. This shift implies that climate
change may have consequences for organisms with low-salinity thresholds, including oysters and crabs.

Salinity has a profound impact on the physical, chemical,
and biological dynamics of estuaries. The most relevant
physical consequence of salinity is its effect on density and
therefore circulation and stratification (Johnson et al. 1991).
Chemical impacts are numerous since most equilibrium and
rate constants are salinity dependent. For example, with in-
creasing salinity, pH increases while organic matter solubil-
ity decreases (Cai et al. 1998). Many estuarine fauna, in-
cluding economically important oysters, crabs, and clams,
cannot exist below certain salinity thresholds (Jackson and
Jesien 1996). Salinity, then, has an important association
with estuarine water quality; a simple illustration of this is
the observed correlation between the vertical salinity gra-
dient and oxygen depletion in Virginia estuaries (Kuo and
Neilson 1987).

Climate change due to increases in atmospheric CO2 may
affect estuarine salinity in a variety of ways. Sea-level rise
will likely cause salinity to increase as seawater encroaches
landward. Wind-induced changes in ocean currents may also
lead to changes in the salinity distribution. Finally, changes
in the climate of estuarine watersheds will change riverine
freshwater input (Cayan and Peterson 1993; Justić et al.
1996). In this paper, we examine the latter effect for Ches-
apeake Bay, the largest and most productive estuary in the
United States (Schubel and Pritchard 1986; Harding and Per-
ry 1997). Salinity variations in Chesapeake Bay are, to a
large extent, driven by flow variations of the Susquehanna
River: this river supplies 62% of the gauged freshwater and
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is the only river that empties directly into the mainstem of
the bay (Schubel and Pritchard 1986). Using a simple water
balance model of the Susquehanna River Basin (SRB) and
the output of four climate models, Najjar (1999) and Neff
et al. (2000) estimated that Susquehanna River flow would
change by 24% to 133% for a doubling of atmospheric CO2

over present-day levels. Here, we develop a simple model
of salinity variations in Chesapeake Bay and force it with
output from the SRB model to estimate salinity changes for
a doubling of atmospheric CO2.

Model development

Models for predicting salinity in Chesapeake Bay exist,
but they are either difficult to implement or do not explicitly
account for the possibility of environmental change. The em-
pirical models of Wang et al. (1992) and DeSilets et al.
(1992) predict salinity as a function of location and time of
year, but none of the inputs is river flow. Hydrodynamic
models of the bay that are forced by riverine input have been
developed (Johnson et al. 1991), but they are computation-
ally demanding and difficult to analyze. Hydrodynamic mod-
els have many variables that are difficult to constrain—wind
velocity, air temperature, freshwater flow, open ocean
boundary conditions, and turbulence parameterizations just
to name a few. For predictive purposes, it is desirable to
strike a balance between the number of environmental inputs
in a model and its ease of implementation.

Here, we adopt statistical methods for modeling salinity
in Chesapeake Bay, incorporating flow as the environmental
input parameter. Although statistical models have limited use
in highly evolving systems, they do have the advantage of
simplicity, and accuracy increases with larger data sets. Ac-
tually, in the most dynamical of systems, discrete formula-
tions—including regressions—can be more accurate than
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smooth analytical models (Roush et al. 1994). Since Ches-
apeake Bay is a highly variable system (Schubel and Prit-
chard 1986), it seems appropriate to model its salinity sta-
tistically, especially since Chesapeake Bay and the rivers
flowing into it have been extensively monitored.

We chose autoregression—the regression of a variable on
itself—to model salinity. Modeling salinity autoregressively
makes sense on physical grounds because the finite-differ-
ence form of the salinity advection/diffusion equation has
terms representing past and present values. Additionally, our
autoregression scheme incorporates river flow, which resem-
bles the velocity term in a finite-difference scheme for ad-
vection. Thus, our basic salinity model is

S 5 a S 1 a S 1 · · · 1 a S 1 b Ft 1 t21 2 t22 n t2n 0 t

1 b F 1 b F 1 · · · 1 b F 1 k, (1)1 t21 2 t22 m t2m

where St is the present monthly mean salinity at any partic-
ular location and Ft is the present monthly mean flow from
the Susquehanna River. St, then, is a function of the previous
n monthly salinities (St21 through St2n), the present month’s
flow, and the previous m monthly flows. Including several
flow lags ensures representation of the month of highest in-
fluence, since a packet of freshwater reaches different loca-
tions at different times.

Given the form of (Eq. 1), we have the option of running
the salinity model with the aid of observed values. This is,
in fact, the standard procedure for calculating the skill of a
statistical model in reconstructing the calibrating time series.
Essentially, what this means is that the output at each time
step is not fed back into the model—i.e., the model is not
actually recursive. This procedure provides a measure of the
maximum skill at simulating a time series. In this study, we
use three verbs to describe the creation of salinity time se-
ries: reconstruct, which applies to both the nonrecursive and
recursive forms of (Eq. 1); simulate, which only applies to
the recursive form of (Eq. 1); and project, which also only
applies to the recursive form of (Eq. 1). Evaluation of the
model can involve both reconstruction and simulation, but
application of the model only involves simulation and pro-
jection (the latter referring to the simulation of future val-
ues). The reason for this is that there are usually scarce or
completely missing data when we want to apply the model;
recursive modeling is then necessary, even if our sole inter-
est is to reconstruct such scarce data.

A comprehensive autoregressive Matlab freeware package
off of the Worldwide Web (LeSage, www.spatial-
econometrics.com) made possible the computation of model
coefficients, the r2 parameter, the t-statistic for the indepen-
dent variables, and their P values, or significance. The co-
efficients in (Eq. 1) result from least-squares analysis, and
the number of relevant salinity terms, n, derives from the
application of Akaike’s Information Criterion (AIC). The
AIC is a mathematical minimum of the training error and
the number of terms being fit; on a plot of serial salinity
correlation (autocorrelation) versus lag number, the AIC can
be thought of as a horizontal line intersecting the plotted
curve at a lag number, n, where the curve’s slope becomes
small (S-Plus 2000). Autoregressive techniques also allow
for the expansion of k into a series of errors in order to

further reduce the model residuals to white noise. In this
case, the model is classified as a full autoregressive-moving
average (ARMA) model (Shumway 1988). In this study,
however, not only was there little need for the moving av-
erage component in reconstructing the observed, but such a
component would have been difficult to constrain for salinity
projections. Thus, k here is simply an overall error, or, the
model y-intercept.

Dividing the bay into grid cells was necessary to provide
a modest two-dimensional resolution of salinity. Therefore,
we used the horizontal discretization of Harding and Perry
(1997), which is based on the bay’s natural salinity zonation,
along with four vertical divisions, to produce a total of 24
grid cells. Figure 1 depicts the horizontal and vertical divi-
sions used in this study; they capture the two primary salin-
ity gradient directions in the mainstem bay—north–south
and vertical. The vertical divisions are 0–5 m, 5–10 m, 10–
15 m, and 151 m in depth. The numbering convention we
adopt is (i, j), where i represents the ith horizontal grid cell
starting from the north, and j represents the jth vertical grid
cell starting from the surface. Only one cell, numbered (1,
4), lacks a model because the water is too shallow, but each
of the remaining 23 cells contains a uniquely different au-
toregressive model.

Every model contains seven flow terms, although most
cells are insensitive to 6-month-old flow. There were several
reasons to be more generous and less particular with flow
than with salinity inputs. One is that 6 months span the
amount of time required to characterize the shape of the
mean annual (flow) cycle. Consequently, the applied model
should contain enough information at any given time and
locale to adequately track seasonal variations. Second, al-
though analyzing each flow term for relevance would pro-
vide information on the natural circulation in the bay, there
are better ways to achieve this. Such information is not
wholly pertinent to this study, as our intent is to model cer-
tain effects of climate change through quick and relatively
effective means, and using autoregression at all is a state-
ment about the need to study more closely the predicted
variable—in this case, salinity. Here, the number of salinity
terms, or the order, varies from cell to cell and represents
the salinity memory in each cell; this provides a backdrop
on which we can analyze our results. Finally, the record of
Susquehanna River flow is older and more continuous than
salinity data. This simply means that there is no actual limit
to the number of flow terms we can include because initial-
izing them is never a problem.

The salinity data in this study, of which only mainstem
bay monitoring stations contribute (Fig. 1), were collected
by the Chesapeake Bay Water Quality Monitoring Program.
Salinity was measured during every month in the period
1984–1994, although the summer months usually contain a
greater abundance of observations. There are typically 200
observations per cell per year, taken from about 45 d
throughout the year, and we computed monthly averages for
each of the 23 cells from 1984 to 1994. Our models are
calibrated on observations starting in 1984: in older salinity
records, the reduced data density leads to discontinuities in
resulting monthly time series. However, despite their patch-
iness, older records can provide an evaluation for our mod-
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Fig. 1. View of the longitudinal divisions used in this study.
Divisions 1 and 2 are the oligohaline region, 3 and 4 are the me-
sohaline, and 5 and 6 are the polyhaline (after Harding and Perry
1997). Monitoring stations are designated by ovals. Also shown is
a relative size grid of the 23 cells created for autoregression. The
bottom row (x, 4) contains cells of varying height, as apparent from
longitudinal bathymetry (dark line) and the shallowness at (1, 4).

Fig. 2. Time series for the observed and reconstructed salinity
in cells (1, 3) and (6, 1) from 1985 to 1994. The r2 values in
parentheses are for the recursive models.

els, so we obtained historical data for 1949–1982 from the
Chesapeake Bay Program office archives and computed
monthly averages for each cell when possible. The flow data
are from the United States Geological Survey (USGS), with
daily flow from Harrisburg, Pennsylvania (USGS station
number 01570500) and Conowingo, Maryland (USGS sta-
tion number 01578310); Harrisburg is approximately 100 km
upstream of Conowingo Dam, which is about 15 km up-
stream of the mouth. Monthly averaged flows for Conow-
ingo during 1984–1994 and Harrisburg during 1949–1982
were used. We multiplied the Harrisburg flow by 1.145 (Na-
jjar 1999) to approximate the Conowingo flow during 1949–
1982.

Model evaluation

Figure 2 shows reconstructed time series for two of the
23 cells—cell (6, 1), which is at the surface near the bay
mouth, and cell (1, 3), which is at the bottom near the Sus-
quehanna River mouth. The model for cell (6, 1) has an r2

of 0.800, and the model for cell (1, 3) has an r2 of 0.417.
Also shown are the reconstructions from the recursive form
of (Eq. 1), and in each cell the skill drops by only approx-
imately 9 percentage points. This fact suggests that autore-
gressive models such as these are suitable for future projec-
tions: despite a lack of stabilizing observations, the recursive
reconstructions do not appear to diverge from the observed
through time. This point is later discussed in more detail.
Time series for cells (1, 3) and (6, 1) together illustrate the
importance of the order, n, of a model, which generally in-
creases as variability decreases. The model for (1, 3) is of
order 5; the model for (6, 1) is of order 7; and it is clear
that the former time series is more variable. One might think
that adding terms necessarily improves the model, but the
purpose of the autocorrelation plots is to reveal statistically
insignificant terms that should be omitted from a model. This
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Fig. 3. (a) r2 values contoured to the various cells in Chesa-
peake Bay. (b) Contours of model orders. (c) Contours of the r2

values resulting from reconstruction of the mean annual cycle.

Table 1. Summary of the performance of all 23 autoregressive
models. Each row corresponds to a separate cell. There are three
columns of r2 values followed by a column providing the model
order (number of salinity lags). See Fig. 1 for the location of each
cell.

Cell r2* r2† r2‡ Order

(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)
(2, 3)

0.518
0.450
0.417
0.846
0.786
0.610

0.325
0.295
0.214
0.462
0.415
0.252

0.667
0.707
0.639
0.941
0.928
0.864

1
1
5

10
4
1

(2, 4)
(3, 1)
(3, 2)
(3, 3)
(3, 4)
(4, 1)

0.495
0.912
0.907
0.679
0.534
0.911

0.213
0.486
0.395
0.156
0.181
0.421

0.785
0.965
0.942
0.822
0.770
0.972

1
13
13

3
4
4

(4, 2)
(4, 3)
(4, 4)
(5, 1)
(5, 2)
(5, 3)

0.926
0.758
0.585
0.881
0.870
0.629

0.373
0.265
0.210
0.377
0.322
0.247

0.968
0.900
0.793
0.954
0.960
0.907

8
3
3
4
7
1

(5, 4)
(6, 1)
(6, 2)
(6, 3)
(6, 4)

0.500
0.800
0.643
0.300
0.123

0.213
0.378
0.315
0.138
0.089

0.854
0.943
0.932
0.455

20.024

1
7
6
2
3

* The r2 value resulting from the reconstruction of the calibrating time series
(1984–1994).

† The r2 value resulting from the reconstruction of the calibrating time series
using the observed mean annual salinity cycle for that period.

‡ The r2 value resulting from the reconstruction of the mean annual salinity
cycle using the recursive autoregressive model.

is good for two reasons: it conveys information about mem-
ory, as mentioned before, and it makes the models easier to
use by minimizing the number of months committed for ini-
tialization. Thus, cell (1, 3) has a mediocre model no matter
how many terms are included.

Figure 3a shows the distribution of r2 values resulting
from each cell’s statistical calibration (values correspond to
nonrecursive reconstructions). Notice that regions of poor fit
are either near the ocean or the mouth of the Susquehanna
River. With the exception of the low skill near the river
mouth, the pattern coincides with what we expect from a
model forced by flow. Why, though, is the model skill better
at midbay than toward the river mouth? Figure 3b, which
shows the distribution of salinity lags, provides some insight.
Given the fact that the number of salinity lags is approxi-
mately inversely proportional to salinity variability, and that
Figs. 3a and 3b reveal similar patterns, then we can say that
the variability increases from midbay toward the river
mouth. Although the reduction in skill toward the bay mouth
is most likely due to the framework of our model (i.e., river
flow is an inadequate predictor toward the bay mouth), the
reduction in skill toward the river mouth is probably a re-
flection of the difference in sampling rates of salinity and
flow. Since salinity in a given cell is sampled much less
frequently than flow from the Susquehanna River, it is easy
to see how submonthly variations in flow can lead to salinity
variations that escape our averaging. Consequently, although
salinity and flow are highly correlated near the river mouth,
the combination of high variability in flow with infrequent
salinity observations leads to an apparently high salinity var-
iability—one that is difficult to model. On the other hand,
the high salinity variability at the bay mouth is probably
influenced by oceanic factors at least as much as by poor
sampling rates. Furthermore, given that salty inflows move
along the bottom of the bay, we should expect natural var-
iability to be higher there. We might assume that a whole

new modeling approach—perhaps one incorporating tidal
salt water flows—is then appropriate (Kuo and Neilson
1987).

Nevertheless, as can be seen in Fig. 3a, a large portion of
the bay is above the 0.600 performance range. Even more
promising is the model skill shown in Fig. 3c: r2 values here
correspond to an attempt to reconstruct the mean annual cy-
cle in salinity during 1984–1994. We report this skill in or-
der to relate to the form of the model we use for climate
change projections. The form of the model in that case is
recursive, and its forcing is some mean annual cycle in flow;
a point that will be discussed in detail later. In Fig. 3c, the
forcing flow is the mean annual cycle during 1984–1994,
and the model skill in reconstructing the salinity cycle is
much improved over the skill in Fig. 3a. This point is im-
portant, because reliability for our climate change projec-
tions should hinge more on Fig. 3c than Fig. 3a. Table 1
summarizes the 23 models, including three types of r2 values
and the model orders. The second column of r2 values is the
variance captured by using the observed mean annual salin-
ity cycle as the model; it is apparent that such models typ-
ically contribute less than half of the skill accounted for by
the autoregressive models. Thus, although our autoregressive
models are simple, it is obvious that there is a limit to how
simply one can construct an effective salinity model.
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Fig. 4. Historical simulation, 1949–1982, of Chesapeake Bay
monthly salinity in (4, 2).

Fig. 5. Flow scenarios used in this study. All values are in cubic
meters per second, calculated as monthly averages from daily data.
See text for descriptions of scenarios.

In order to evaluate the relevance of other Chesapeake
Bay tributaries to overall model performance, flow data for
the Potomac and James Rivers (Fig. 1) were also analyzed.
These two rivers were chosen because they are the second
and third largest contributors of freshwater to the bay, re-
spectively. The r2 distributions resulting from addition of
each river’s present flow, and its six previous months of flow,
were analyzed. Such distributions showed that the Potomac
captured up to 10% of the observed salinity variance, where-
as the James captured a maximum of another 6%. However,
these maximum contributions occurred in different locales,
and the optimal improvement was no more than 13% of the
observed variance at cell (6, 4). Although this may be sig-
nificant, the majority of the bay experienced little to no im-
provement. Furthermore, the cells benefiting most from the
additional inputs remain poorly modeled. Finally, a sensitiv-
ity analysis—involving flow increases for each river in
turn—indicated that the three-river model is physically un-
realistic: extra flow from the Potomac actually increased sa-
linity in most cells.

Essentially, there are four reasons why flow from the Po-
tomac and James Rivers does not improve the existing mod-
els much: (1) the combined flow from those rivers is rela-
tively small compared to that of the Susquehanna River, (2)
those rivers do not empty directly into the mainstem bay
(Schubel and Pritchard 1986), (3) the rivers are downstream
of much of the bay, and (4) a significant portion of monthly
mean flow variance in the Potomac (63%) and James (44%)
Rivers can be accounted for by the Susquehanna River dur-
ing 1984–1994.

As noted earlier, the r2 values in Fig. 3a represent the
performance of each model according to (Eq. 1), but using
the observed salinity values during 1984–1994 as lags. On
the other hand, the r2 values in Fig. 3c reflect the skill that
our future salinity projections have. However, to further un-
derstand the quality of our autoregressive scheme, testing its
performance on data outside of the calibrating time period

is important: in this study, we apply the recursive model to
discontinuous salinity observations during 1949–1982. Thus,
the best model—in this case, the (4, 2) model—was initial-
ized with the modern mean annual salinity cycle and run
with observed flow in simulating the historical salinity. The
initialization scheme was assumed safe since there was no
indication of a trend in the training data. Figure 4 shows the
resulting time series against observed values. The fit is
promising, with r2 5 0.680, and there is no divergence be-
tween the model and the observed. Also, because of the
reduced density of salinity observations in the historical rec-
ord, the monthly time series may exhibit more variability
than if the observations had been as frequent as those in the
calibrating time period. Therefore, a significant amount of
the reduced skill (0.926 to 0.680) may be a result of the data
set and not the modeling scheme. Importantly, the model
was insensitive to the salinity initialization scheme, which
implies that the explanatory variable—river flow here—is
quite stabilizing. Thus, we can be relatively sure that our
models will avoid any autoregressive artifacts and, instead,
respond to prescribed climate change in a physical manner.

Climate change projections

We now briefly describe the four future streamflow sce-
narios and the means by which they were generated. All of
the scenarios (Fig. 5), are based on a coupling of a water
balance model of the SRB with the predictions of tempera-
ture and precipitation changes from four climate models. The
water balance model is spatially averaged over the SRB and
has a soil moisture reservoir, a snow reservoir, and a reser-
voir from which streamflow is generated (essentially ground-
water). The model is forced by precipitation and tempera-
ture, with the latter being used to estimate rates of
evapotranspiration, the partitioning of precipitation into rain
and snow, and the snowmelt rate. The model has a handful
of parameters that were calibrated to the mean annual cycle
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Fig. 6. Mean annual salinity cycles projected for (4, 2) in re-
sponse to climate change scenarios 1, 2, 3, and 4.

of flow at the mouth of the Susquehanna River (r2 5 0.99).
The model is also skillful at simulating monthly variability
in flow from 1900 to 1987 (r2 5 0.75). Further details are
given in Najjar (1999).

Four separate climate models were used to generate the
temperature and precipitation changes used to drive the SRB
model. All four scenarios are based on climate model pre-
dictions for a doubling of present-day atmospheric CO2, with
the first two being equilibrium responses of atmosphere-only
models to an instantaneous doubling of CO2, and the second
two being transient responses of fully coupled ocean-atmo-
sphere models to a gradual increase in atmospheric CO2.
Scenario 1 is based on the nesting of a high-resolution mod-
el, known as RegCM2 (regional climate model 2), into the
GENESIS global general circulation model (GCM). Details
of the model run for the present day are given in Jenkins
and Barron (1997) and for a doubling of atmospheric CO2

in Najjar (1999). Scenario 2 precipitation was generated by
applying a neural network downscaling technique to GEN-
ESIS climate model output (Crane and Hewitson 1998). No
downscaled temperatures were generated, so temperature
changes from scenario 1 were used for scenario 2. The use
of nesting and downscaling generally increases model skill
when compared to the use of the raw GCM output, and these
examples are no exception (Jenkins and Barron 1997; Crane
and Hewitson 1998). Both models simulate annual mean pre-
cipitation well, and both have a summer maximum in pre-
cipitation, in agreement with the observations, though the
nested model tends to predict too much precipitation during
this time. The streamflow predictions based on these models
are described in Najjar (1999).

Scenarios 3 and 4 are based on climate models from the
Hadley Centre for Climate Prediction and Research and the
Canadian Climate Centre (CCC). These state-of-the-art glob-
al models were chosen mainly because they are being used
by the National Assessment of the Potential Consequences
of Climate Variability and Change, which was initiated by
the United States Federal Government in 1997. The use of
these models in this study facilitates integration with other
climate assessment activities. A description of the model re-
sults for the mid-Atlantic region of the United States is given
in Polsky et al. (2000), and detailed descriptions of the mod-
els themselves can be found in references therein. Their skill
in reproducing northern midlatitude climate (comparable to
SRB climate) is good: they slightly overestimate winter pre-
cipitation, but compared to other major GCMs they estimate
temperature quite well (Houghton et al. 1996). Results of the
climate models from 2090–2099 were used, corresponding
to a doubling of atmospheric CO2 in the models. The stream-
flow predictions based on these models are described in Neff
et al. (2000).

For three of the four models—scenarios 1, 2, and 3—the
predictions of annual mean flow change are similar, with
increases of 32%, 27%, and 29%, respectively, from the
modern mean (1984–1994) flow. The CCC model predicts
a much larger temperature increase and a much smaller pre-
cipitation increase, which results in a modest (4%) decrease
in annual mean flow. Most of this decrease occurs during
spring and summer. All four models predict increases in fall
and winter flow due to warming-induced snowmelt. The tim-

ing of the streamflow increases in the three wettest models,
which generally reflects the timing of the precipitation in-
creases: winter and spring for scenario 1, spring and summer
for scenario 2, and summer and fall for scenario 3 (Fig. 5).

The method we use for projecting climate change impacts
is through the simulation of mean annual cycles. The models
are initialized with present-day mean annual cycles in salin-
ity and flow; projections are then made by forcing the mod-
els with the repeating annual cycle in the predicted stream-
flow. All salinity projections represent the mean annual
cycles of the resulting steady state time series. Figure 6 de-
picts the climate change impacts on cell (4, 2) for all four
scenarios, in addition to the modeled present-day mean an-
nual cycle. The latter is quite skillful, capturing approxi-
mately 97% of the variance in the observed cycle (Table 1),
which is therefore omitted from the figure for simplification.
In reference to the observed/modeled cycle, notice that the
amplitude and phasing of the climate change projections dif-
fer modestly from the present day. Not surprisingly, the
shape of the forcing flow cycles seems to dictate these dis-
tortions (Fig. 5): scenario 1 tends to shift the cycle later,
scenario 2 tends to force longer winter reductions in salinity,
scenario 3 tends to shift the cycle earlier, and scenario 4
tends to force longer summer increases in salinity. The lag
of the cycle in scenario 1 is due to the extension of high
spring flow through June, whereas scenario 3 cycles earlier
because of a large early winter flow peak (Fig. 5). On the
other hand, scenario 2 is associated with high flow under
normally low flow months, and scenario 4 is associated with
low flow under normally high flow months (Fig. 5). Climate
change results for other cells are similar to what is seen for
cell (4, 2).

The results for the entire bay are shown in Fig. 7, where
percent changes in salinity are calculated using the unper-
turbed model as the reference. This removes the effect of
poor model performance when calculating annual mean
changes. The parts per thousand (ppt) changes (Fig. 8) are
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Fig. 7. Climate change impact on Chesapeake Bay for (a) sce-
nario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4. The
contours are isolines of salinity change, in percent deviation from
the projected normal means.

Fig. 8. Climate change impact on Chesapeake Bay for (a) sce-
nario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4. The
contours are isolines of salinity change, in parts per thousand (ppt).

calculated with these percent changes on modern mean sa-
linities to convey a sense of absolute change. Notice that the
overall salinity changes directly reflect the respective mag-
nitudes of flow change. Also notice the similarity in spatial
distributions of salinity change in all four scenarios: Fig. 7
shows that annual mean salinity control by the Susquehanna
River is essentially limited by distance. On the other hand,
Fig. 8 shows that large salt concentration changes occur in
the surface middle bay. This makes sense because the con-
centration is calculated as a function of the percent changes
and the mean background salinity: wherever both of these
are substantial is where the ppt changes are greatest. The
region of large ppt changes coincides with the region of high
memory (Fig. 3), and this supports the idea that fresh and
salt water signals add constructively there.

Discussion and conclusions

The results presented here indicate several important char-
acteristics of salinity variation in Chesapeake Bay. Simple
statistical models are efficient at capturing the majority of
seasonal and interannual variance in much of the bay. The
variance that is difficult to capture is probably a result of
submonthly fluctuations of the Susquehanna River and con-
tinental shelf currents. It might also be possible to improve
simulation of the bay’s northern and southern extremes by
including a tidal flow model component, but this is a non-
trivial exercise. In terms of projecting the impacts of future
climate change, tidal inputs are probably irrelevant, as tidal
flows are unlikely to change, barring massive sea-level rise.
Our simple models predict changes in salinity that are con-
sistent with expectations. Although each scenario has its mi-
nor distinctions, the resulting salinity cycles are purely func-
tions of location in the bay and the shape of the forcing flow

cycle. The first three scenarios agree that salinity in the bay
will decrease, anywhere from 22.6% to 27.5% near the
mouth of the Susquehanna, to 0.6% to 0.8% near the mouth
of the bay. The CCC scenario results in increased salinity—
anywhere from 3.5% to 0.1%, depending on distance from
the Susquehanna River. In all four scenarios, there is a nearly
identical spatial pattern relating annual mean percent flow
change to annual mean percent salinity change (Fig. 9), mak-
ing salinity response predictions straightforward for any sce-
nario.

In order to improve predictions of the response of estua-
rine salinity to climate change, other factors need to be con-
sidered, the most important of which is sea-level rise. Ex-
isting approaches for simulating the impact of sea-level rise
on salinity are only recently complex enough to handle even
two-dimensional dynamics (Kuo 1992). The most wide-
spread models are zero- or one-dimensional models for es-
tuaries with very simple bathymetry (Hull and Titus 1986;
Savenije 1986). Although an order of magnitude estimate of
the response may be gleaned from these models, they are
inappropriate for estimating the spatial and temporal re-
sponse of salinity in estuaries with complex topography,
such as Chesapeake Bay (Fig. 1). We think it likely that a
three-dimensional hydrodynamic model will be necessary to
simulate the response of Chesapeake Bay salinity to sea-
level rise.

In terms of the bay’s ecology, this study provides some
useful information. Figure 8 suggests that increased flow will
increase stratification in the water column, but that reduced
flow will reduce stratification. As stratification is significant
for the transport of dissolved oxygen, fisheries should be
cautious of higher flow and the resulting bottom water hyp-
oxia/anoxia. For shellfish, salinity itself is important, and
low-salinity regions seem most at risk. This is because of
their particular susceptibility to changes in streamflow, as
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Fig. 9. Relationship between Susquehanna River flow change
and Chesapeake Bay salinity change for (a) scenario 1, (b) scenario
2, (c) scenario 3, and (d) scenario 4. Numbers represent the annual
mean percent salinity change normalized by the annual mean per-
cent flow change.

well as the fact that the most probable scenario is one in-
volving reduced salinity. Thus, organisms with low-salinity
thresholds may exhibit the most change. In particular, the
American oyster (Crassostrea virginica), which is tolerant
of salinities between 5‰ and 301‰, may see serious de-
clines, as it is already fraught with disease (USEPA 1998).
Additionally, the soft shell clam has a low tolerance limit of
8‰, the hard shell clam has high mortality under 12‰, and
the blue crab (Callinectes sapidus) cannot survive under
20‰ (Jackson and Jesien 1996). Although these organisms
are used to naturally large variations in salinity, our results
reveal shifts from the mean natural regime. Even without
considering the potential for increased salinity variability
(for which all but scenario 2 indicate), these salinity shifts
imply spatial shifts of habitation zones

Our high flow results yielded sample estimates for maxi-
mal isohaline (salt wedge) displacement. These estimates are
based on observed salinity gradients at cells (1, 1)/(2, 1) and
(3, 1)/(4, 1), respectively. We applied projected salinity
changes—the ppt changes at (1, 1) and (3, 1)—to those gra-
dients, yielding distance measures; we then derived percent
measures using 320 km for the length of the bay (Schubel
and Pritchard 1986). Results show that the salt wedge may
recede by from 6.3 km (about 2% of the length of the bay)
near the Susquehanna River to as much as 55 km (about
17% of the length of the bay) near the middle bay. This
suggests that habitable regions may shrink. Furthermore, de-
creased salinity can affect the survival rate of virulent bac-
teria such as cholera; the complex interactions between sa-
linity, cholera, and plankton are difficult to predict, though,
since cholera can easily become dormant in planktonic hosts
during periods of low salinity (Singleton et al. 1982a; Tam-
plin et al. 1990). Cholera also requires organic matter nutri-

tion (Singleton et al. 1982b), and if decreasing salinity in-
creases dissolved organic carbon (DOC), then the bacteria
might survive quite well in the surface waters (Cai et al.
1998), where plankton and heat would also be plentiful.

From these speculations, it is even more obvious that fur-
ther research is needed. As a first attempt at modeling Ches-
apeake Bay salinity, our simple approach is adequate in
some regions, but deficient in others. The utility of this mod-
eling approach, however, is extensive because of its sim-
plicity (it requires only two input variables). Thus, applying
it to other estuaries is straightforward as long as there are
extensive data. This exercise would be meaningful in the
sense that all estuaries may be affected by climate change,
particularly through river runoff changes (Miller and Russell
1992). Likewise, the modeling scheme developed here is
easily adaptable for reverse calculations, such as reconstruct-
ing ancient watershed hydrology and climate using fossil
proxies as salinity inputs (Cronin et al. 2000).
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