Isolation and life cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria

Mathias Middelboe, Amy M. Chan, and Sif K. Bertelsen

Full Citation: Middelboe, M., A. M. Chan, and S. K. Bertelsen. 2010. Isolation and life cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria, p. 118-133. In S. W. Wilhelm, M. G. Weinbauer, and C. A. Suttle [eds.], Manual of Aquatic Viral Ecology. ASLO. [DOI 10.4319/mave.2010.978-0-9845591-0-7.118]

ABSTRACT: Basic knowledge on viruses infecting heterotrophic bacteria and cyanobacteria is key to future progress in understanding the role of viruses in aquatic systems and the influence of virus-host interactions on microbial mortality, biogeochemical cycles, and genetic exchange. Such studies require the isolation, propagation, and purification of host-virus systems. This contribution presents some of the most widely used methodological approaches for isolation and purification of bacteriophages and cyanophages, the first step in detailed studies of virus-host interactions and viral genetic composition, and discusses the applications and limitations of different isolation procedures. Most work on phage isolation has been carried out with aerobic heterotrophic bacteria and cyanobacteria, culturable both on agar plates and in enriched liquid cultures. The procedures presented here are limited to lytic viruses infecting such hosts. In addition to the isolation procedures, methods for life cycle characterization (one-step growth experiments) of bacteriophages and cyanophages are described. Finally, limitations and drawbacks of the proposed methods are assessed and discussed.